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NUMERICAL MODELING OF UNSTEADY RADIATIVE-CONVECTIVE

HEAT TRANSFER ON A FLAT-PLATE BOUNDARY LAYER

IN A SELECTIVELY EMITTING AND SCATTERING MEDIUM

UDC 536.33N. A. Rubtsov and V. A. Sinitsyn

A conjugation problem for radiative-convective heat transfer in a turbulent flow of a high-
temperature gas–particle medium around a thermally thin plate is considered. The plate ex-
periences intense heating from an outside source that emits radiation in a restricted spectral
range. Unsteady temperature fields and heat-flux distributions along the plate are calculated.
The results permit prediction of the effect of the type and concentration of particles on the
dynamics of the thermal state of both the medium in the boundary layer and the plate itself
under conditions of its outside heating by a high-temperature source of radiation.

In the present paper, an attempt is made to develop an adequate model for radiative-convective heat
transfer in a turbulent boundary layer of a high-temperature gas–particle medium over a solid surface. The
problem of interest may be used in heat-transfer calculations of steam-boiler furnaces, channels of MHD-
generators, various chemical apparatus, thermal-protection systems of space vehicles, etc.

The present consideration is based on the approach previously used in [1–3], where the radiative-
convective heat transfer on a thermally thin plate was studied in a conjugate statement of the problem.
Further, we take into account the presence of particles in the flow, which necessitates an adequate consider-
ation of radiation scattering by solid particles in calculating the radiative heat transfer.

We consider a conjugation problem for radiative-convective heat transfer in a turbulent flow of a
medium that emits, absorbs, and scatters radiation over a thermally thin plate. It is assumed that the particles
in the flow exert no influence on the thermal properties of the medium but affect its optical properties, which,
in addition, depend on temperature and on the wavelength of radiation. The heat capacity is assumed to be
temperature-independent, whereas the viscosity and thermal conductivity are linear functions of temperature,
and the density is inversely proportional to it. The radiation transfer along the plate is ignored. The time
required for boundary-layer heating is assumed to be far shorter than that for the plate; hence, the quasi-
stationary approximation for the boundary-layer heat transfer may be used. The plate is heated from an
initial temperature Tw0, the temperature over the length 0 < x < x0 of the plate being kept unchanged
during the whole heating period. The lower surface and the trailing edge of the plate are thermally insulated.
Outside the boundary layer, there is a source of radiation in the form of a black surface with a temperature
Ts. The surface emits radiation in a restricted spectral range ∆, in which the medium is nontransparent.
The radiating surface of the source is parallel to the plate.

The thermal state of the plate is described by the nonstationary heat-conduction equation, and the
boundary-layer heat transfer is described by the well-known system of equations that includes the equations
of continuity, motion and energy.
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With the Dorodnitsyn transform, the dynamic part of the problem can be solved independently of the
thermal one, and with allowance for the adopted assumption, it reduces to solving the differential equation
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with the following boundary conditions: f = 0 and f ′ = 0 for η = 0 and f ′ → 1 as η → ∞. Here f is

the dimensionless stream function, η =
(ρ∞u∞
µ∞x

)1/2
y∫

0

ρ

ρ∞
dy and ξ = x/L are the dimensionless transverse

and longitudinal coordinates, respectively, x and y are the corresponding dimensional coordinates, u is the
longitudinal velocity, ρ is the density, µ is the viscosity, and L is the calculation domain (length) of the plate.
The prime denotes differentiation with respect to the coordinate η; the subscript ∞ refers to the free-stream
conditions.

The thermal part of the problem is represented by the equations and boundary conditions that describe
heat transfer in the boundary layer:

∂

∂η

(( 1
Pr

+
µ̄t

Prt

)∂θ
∂η

)
+
f

2
∂θ

∂η
− ξf ′ ∂θ

∂ξ
− Sk

Re Pr
ξΨ = 0, ξ0 < ξ < ξ1, 0 < η <∞,

(2)
ξ = ξ0: θ = θ0, η = 0: θ = θw, η →∞: θ → 1

and in the plate:
∂θw
∂Fo

=
∂2θw
∂ξ2

− æ SkQw, ξ0 < ξ < ξ1, Fo > 0,

(3)
Fo = 0: θw = θw0, ξ = ξ0: θw = θw0, ξ = ξ1:

∂θw
∂ξ

= 0.

Hereinafter µ̄t = µt/µ, µt is the turbulent viscosity, θ = T/T∞ is the dimensionless temperature, θ0(η) is the
self-similar solution of the energy equation (2) without emission, æ = λ∞L/(λcH) is the conjugation param-
eter (H is the plate thickness), Re = ρ∞u∞L/µ∞, Fo = act/L

2, Pr = µ∞/(ρ∞a∞), and Sk = 4σT 3
∞L/λ∞ are

the Reynolds, Fourier, Prandtl, and Stark numbers, respectively, Prt is the turbulent Prandtl number, λc and
λ∞ are the thermal conductivities of the plate and medium in the free flow, respectively, ac is the thermal
diffusivity in the plate material, T∞ is the free-stream temperature, ξ0 = x0/L, ξ1 = x1/L, x0 and x1 are the
end points of the calculation domain, and σ is the Stefan–Boltzmann constant; the subscript w refers to the
conditions on the plate.

The dimensionless total wall heat-flux density Qw on the plate in Eq. (3) is given by the expression
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where Φw = Ew/(4σT 4
∞) and Ew is the total density of the resultant radiation flux on the plate.

The expression for the dimensionless divergence of the radiation–flux density in Eq. (2) is
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where E0λ(T ) = 2πhc2/[λ5(exp (hc/(kλT )) − 1)] is the equilibrium radiation–flux density, E∗λ =

2π

1∫
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Iλ(τλ, γ)γ dγ is the volume density of incident radiation, Iλ is the radiation intensity, γ is the cosine of

the angle between the ordinate axis and the direction of propagation of radiation, λ is the wavelength, c is the
velocity of light in vacuum, h and k are the Planck and Boltzmann constants, respectively, τλL = kλL is the
characteristic optical thickness, and kλ is the damping factor of the medium (the subscript λ marks spectral
quantities). Integration over the wavelength in Eq. (4) is performed in the spectral range ∆, in which the
medium is nontransparent. The optical depth in the cross section ξ of the boundary layer can be written as
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and depends on the wavelength and temperature.
Radiative heat transfer in the system under consideration, i.e., in a plane slab, bounded by the source

and plate surfaces, of a medium that emits, absorbs, and scatters radiation, is described by the radiative
heat-transfer equation. To solve this equation, we use the method of average fluxes [4]. In this method, the
calculation of the radiation field reduces to solving the system of equations
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boundary layer, εw is the emissivity of the plate, ωλ = βλ/kλ is the single-scattering albedo, kλ and βλ are
the damping and scattering factors, respectively, and ζ̄ is the shape factor for the phase function [5].

To calculate the velocity field in the turbulent boundary layer, we used the Cebeci–Smith two-layer
model [6].

Equation (1) was integrated by the iteration-difference method. The thermal part of the problem was
solved by consecutive adjustment of the plate temperature on the basis of simultaneous solution of the energy
and radiation-transfer equations with the boundary condition at the interface, depending on the sought
temperature. This procedure was described in detail in [7].

We studied a gas–particle medium, which was a mixture of carbon dioxide, steam, and solid particles.
As the solid component, coal and ash particles were considered. To some extent, the atmosphere inside
steam-boiler furnaces can be modelled with such a mixture.

Ignoring scattering in the gaseous phase, we can represent the damping factor of the model medium
as kλ = kλp + æλg, where kλp is the damping factor of the cloud of particles and æλg is the gas-absorption
coefficient.

Selective absorption of radiation in the gaseous phase was taken into account by the narrow-band
method based on the Goody statistical model [8]. In this model, the distribution of absorption lines over
the frequency spectrum is assumed to be random, and the intensity of each line obeys a certain law (in most
cases, an exponential one). In this method, the spectral absorption coefficient at moderate pressures can be
represented as

æλg = P (γλCO2
CCO2

+ γλH2OCH2O),

where P is the total pressure of the gas, C are the molar concentrations of the components of the mixture,
and γλ is the average intensity of a line in the absorption band.
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Fig. 1 Fig. 2

The band parameter γλ is temperature-dependent. The values of this parameter within the temperature
range of 300–1500 K were borrowed from [9, 10]. In calculating radiative heat transfer, we took into account
the rotational band and the bands with absorption coefficients 7250, 5331, and 3755 cm−1 for H2O, and 667
and 3715 cm−1 for CO2.

The parameters that characterize the optical properties of the particles were borrowed from [11].
Considering the cloud of particles as a polydispersive mixture with a gamma-distribution over the size, Kim
and Lior [12] obtained approximate formulas for estimating the damping and scattering factors as functions
of the diffraction parameter x = πd̄/λ (d̄ is the mean particle diameter). The expressions for the damping
and scattering factors (kλp and βλp, respectively) of coal particles are
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)2 α+ 2
α+ 1
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2
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Here N is the numerical concentration of particles, α is an empirical factor that characterizes the size dis-
tribution of particles, fi = 8[qi − ln (1 + qi + q2

i /2)]/q2
i (i = 1 and 2), q1 = (nn′)−1/2, and q2 = 2/q1 (n and

n′ are, respectively, the real and imaginary parts of the complex refractive index m = n− in′).
For ash particles, the damping factor can be calculated by the formula
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C1 = 4π(n− 1)/λ, b = (α+ 1)/(d̄/2), χ = arctan (C1/b).

The absorption coefficient of ash is known to be small; hence, we can assume that the scattering factor due
to ash is βλp ≈ kλp. Formulas (5) and (6) describe the optical properties of the particles within the range
x = 25–100 with an accuracy of 10%.

The heat-transfer calculations were carried out for the free-stream temperature T∞ = 1000 K and
the temperature of the outside source of radiation Ts = 1500 K. The following values of the determining
parameters were assumed: θw0 = 0.3, Pr = 0.7, Prt = 0.9, Re = 106, Sk = 5 · 105, and æ = 1. The emissivity
of the plate was εw = 0.9, which corresponds to an almost black surface. The concentration of particles N
was varied within the range 2 · 106–2 · 108 m−3. The step in the dimensionless time (Fourier number) was
∆Fo = 5 · 10−6.

Figure 1 shows the damping and scattering factors k∗ = kλp/(Nπd̄ 2/4) and β∗ = βλp/(Nπd̄ 2/4) (solid
and dashed curves, respectively) calculated by formulas (5) and (6) for coal and ash particles (curves 1 and
2, respectively). We have d̄ = 100 µm, α = 4, and m = 2.02− 0.8i for coal particles and d̄ = 20 µm, α = 4,
and m = 1.5− 0.01i for ash particles. The range of the wavelengths λ was 0.7–67 µm.

114



Fig. 3

Fig. 4

Figure 2 shows the distribution of the temperature θw of an almost black plate (εw = 0.9) for two
concentrations N of coal particles. Curves 1 were calculated with ten time steps, and curves 2 show the
calculation results for the stationary regime. In the stationary regime, the curves for two values of N coincide.
The particle concentration is seen to play a noticeable part only at the initial stage of heating. The latter can
be explained by the fact that, under the stationary conditions, when the plate temperature is high, thermal
emission from the plate contributes predominantly to the radiation flux. Emission from particles is much
lower, since the mean temperature of the medium in the boundary layer is lower than the plate temperature.
The temperature distribution for ash particles is similar.

Figure 3 shows the density distribution of the resultant radiation flux Φw along the surface of an almost
black plate for two concentrations N of coal and ash particles (a and b are the calculation results for ten time
steps and for the stationary regime, respectively). Curves 1 and 2 shows the calculated distributions for coal
and ash particles, respectively. Curves 2 coincide for different values of N . A stronger dependence of Φw on
the concentration of coal particles is noteworthy, which results from the fact that coal particles, which have
a greater mean diameter d̄ compared to ash particles, have a higher damping factor βλp = β∗(Nπd̄ 2/4) for
an identical value of N .

Figure 4 shows the temperature profile at the last cross section (ξ = 1) of the boundary layer in the
case of an almost black plate. The notation in Fig. 4 is the same as in Fig. 3.

Close consideration of the evolution of the distribution of the total heat flux Qw along the surface of
an almost black plate shows that the type of particles is of minor importance under stationary conditions,
when thermal emission contributes predominantly to radiative transfer. The total heat flux for coal particles
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diminishes owing to a considerable decrease in emission caused by the larger diameter of these particles
compared to ash particles.

The results obtained allow one to predict the effect of both the type of particles and their concentration
on the dynamics of the thermal state of the medium in the boundary layer and of the plate itself under
conditions of its heating by an outside high-temperature source of radiation.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 93-02-
16852).
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